The Special Hypersurfaces of Minkowski Space
نویسندگان
چکیده
Let x : (M, F ) →֒ (V n+1, F ) be a simply connected hypersurface in a Minkowski space (V n+1, F ). In this paper, using the Gauss formula of Chern connection on Finsler submanifolds, we shall prove that if x(p) is normal to Tp(M)(∀p ∈ M), then M with the induced metric is isometric to the standard Euclidean sphere.
منابع مشابه
$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$
Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...
متن کاملm-Projections involving Minkowski inverse and range symmetric property in Minkowski space
In this paper we study the impact of Minkowski metric matrix on a projection in the Minkowski Space M along with their basic algebraic and geometric properties.The relation between the m-projections and the Minkowski inverse of a matrix A in the minkowski space M is derived. In the remaining portion commutativity of Minkowski inverse in Minkowski Space M is analyzed in terms of m-projections as...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملHoph Hypersurfaces of Sasakian Space Form with Parallel Ricci Operator Esmaiel Abedi, Mohammad Ilmakchi Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
Let M^2n be a hoph hypersurfaces with parallel ricci operator and tangent to structure vector field in Sasakian space form. First, we show that structures and properties of hypersurfaces and hoph hypersurfaces in Sasakian space form. Then we study the structure of hypersurfaces and hoph hypersurfaces with a parallel ricci tensor structure and show that there are two cases. In the first case, th...
متن کاملSpacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b
We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k
متن کامل